>
首页 » 业界动态 » EMI / EMC设计讲座(三)传导式EMI的测量技术(下)

EMI / EMC设计讲座(三)传导式EMI的测量技术(下)

作者:  时间:2008-06-19 21:30  来源:52RD硬件研发

传导式EMI的测量


为了要测量EMI,我们必须使用一个「阻抗稳定网路(Impedance Stabilization Network;ISN)」。和ISN类似的LISN已被应用到离线的电源供应电路中,其全名是「线路阻抗稳定网路(Line Impedance Stabilization Network;LISN)」或「仿真的主要网路(Artificial Mains Network;AMN)」。如图三所示,那是一个简易的电路图。若产品想要通过「国际射频干扰特别委员会(International Special Committee on Radio Interference;CISPR)」所制定的「CISPR 22限制(limits)」规定,就必须采用符合CISPR 16规范所定义的LISN;CISPR 16是CISPR 22所参考的标准。
 

 


图三:一个CISPR LISN的简易电路图

 

使用LISN的目的是多重的。它是一个「干净的」交流电源,将电能供应给电源供应器。接收机或频谱分析仪可以利用它来读出测量值。它提供一个稳定的均衡阻抗,即使杂讯是来自于电源供应器。最重要的是,它允许测量工作可以在任何地点重覆进行。对杂讯源而言,LISN就是它的负载。

假设在此LISN电路中,L和C的值是这样决定的:

电感L小到不会降低交流的电源电流(50/60Hz);但在期望的频率范围内(150 kHz to 30 MHz),它大到可以被视为「开路(open)」。电容C小到可以阻隔交流的电源电压;但在期望的频率范围内,它大到变成「短路(short)」。

上面的叙述(几乎)是为真的。在图三中,主要的简化部分是,缆线或接收机的输入阻抗已经被包含进去了。将一条典型的同轴缆线连接到一台测量仪器(分析仪或接收机或示波器…等)时,对一个高频讯号而言,此缆线的输入阻抗是50欧姆(因为传输线效应)。所以,当接收机正在测量这个讯号时,假设在L和E之间,LISN使用一个「继电/切换(relay/switch)电路」,将实际的50欧姆电阻移往相反的配对线路上,也就是在N和E之间。如此就能使所有的线路在任何时候都能保持均衡,不管是测量VL或VN。

选择50欧姆是为了要模拟高频讯号的输入阻抗,因为高频讯号所使用的主要导线之阻抗值近似于50欧姆。此外,它可以让一般的测量工作,在任何地点、任何时间重覆地进行。值得注意的是,电信设备的通讯埠是使用「阻抗稳定网路」,它是使用150欧姆,而不是50欧姆;这是因为一般的「资料线路(data line)」之输入阻抗值近似于150欧姆。

 

 

图四:对DM和CM杂讯源而言,LISN所代表的负载阻抗

 

为了了解VL和VN,请参考图四。共模电压是25Ω乘以流向E的电流值(或者是50Ω乘以Icm/2)。差模电压是100Ω乘以差模电流。因此,LISN提供下列的负载阻抗给杂讯源(没有任何的输入滤波器存在):

CM负载阻抗是25Ω,DM负载阻抗是100Ω。

当LISN切换时,可以由下式得出杂讯电压值:

VL=25ХIcm+50ХIdm 或 VN=25ХIcm - 50ХIdm

这是否意味着只要在L-E和N-E上做测量,就可以知道CM和DM杂讯的相对比例大小?

其实,许多人常有这样的错误观念:「如果来自于电源供应器的杂讯大部分是属于DM的,则VL和VN的大小将会相等。如果杂讯是属于CM的,则VL和VN的大小也会相等。但是,如果CM和DM的辐射大小几乎相等时,则VL和VN的测量值将不会相同。」

如果这样的观念正确的话,那就表示即使在一个离线的电源供应器中,L和N线路是对称的,但L和N线路上的辐射量还是不相等的。在某一个特殊的时间点,两线路上的个别杂讯大小可能会不相等,但实际上,射频能量是以交流的电源频率,在两条线路之间「跳跃」着,如同工作电流一样。所以,任何侦测器测量此两条线路时,只要测量的时间超过数个电压周期,VL和VN的测量值差异将不会很大的。不过,极小的差异可能会存在,这是因为有各种不同的「不对称性」存在。当然,VL和VN的测量结果必须符合EMI的限制规定。

使用LISN后,就不需要分别测量CM和DM杂讯值,它们是利用上述的代数公式求得的。但有时还是需要各别测量CM和DM杂讯值,譬如:为了排除故障或诊断错误。幸好有一些聪明的方法可以达到各别测量的目的。我们举两个例子:

有一种装置称作「LISN MATE」,不过,目前已经很少被使用了。它会衰减DM杂讯约50dB,但不会大幅衰减CM杂讯(约仅衰减4dB)。它的电路如图五所示。

图六是一种以变压器为基础的装置,它是利用共模电压无法使变压器工作的原理;因为本质上需要差动的一次测电压,才能使变压器线圈内的磁通量「摆动(swing)」。它不像LISN MATE,此时CM和DM杂讯是一起输出。

不过,上述的两种方法都需要修改LISN电路。因为一般的LISN只提供VL或VN,无法同时提供这两者。最好是购买CM和DM杂讯有分离输出的LISN。此外,也应该要有总和检视的功能,以确定是否有遵守技术规范的限制。

 

 

图五:LISN MATE

 

 

图六:CM和DM分离器


 
 
传导式EMI的限制


对EMI而言,滤波器是做何用途呢?表一列出了FCC和CISPR 22的EMI限制规定。此表中比较特殊的是,除了可用dBμV计量以外,也可以用mV来计量。这对那些讨厌使用对数(logarithm)计算的设计者而言很便利。
在对数的定义里:db=20log10[V1/V2] ,V1/V2是输出入电压的比值。所以,dBμV表示是以IμV为对数的比较基准。下式是mV转换成dBμV的公式:

(dBμV)=20Хlog[mV/10-6]

譬如:0.25mV可以透过公式,得出:20log10[0.25Х1,000/1] ≌48 dBμV。

而dBμV转换成mV的公式如下:

(mV)=(10(dbμV)/20)Х10-3
 

 

表一:传导式EMI的限制

 

必须注意的是,FCC并没有规定平均的限制值,只规定了「准峰值(quasi-peak)」。虽然,FCC有认可CISPR 22的限制值。但是,FCC不允许两者混用或并用。设计者必须择一而从。不过,以目前的情况来看,FCC Part 15势必会逐渐和CISPR 22完全一致的。

表二是dBμV与mV的快速转换对查表,我们可以利用上述的公式来转换dBμV、mV;或利用表二查得。

 

表二:dBμV与mV的对查表
 


再观察一下表一中的类别B,尤其是150 kHz至450 kHz,和450 kHz至500 kHz的区域。实际上,对CISPR而言,这是一个连续的区域,因为dBμV对log(f)的限制线在150 kHz到500 kHz的区域内是一条直线。在150 kHz至500 kHz之间,CISPR均限曲线(传导式EMI)的任一点之dBμV值可由下式求出:

(dBμVAVG)= -19.07Хlog(?MHZ)+40.28

为了方便计算和记忆,上式可以改写成:

(dBμVAVG)= -20Хlog(?MHZ)+40

在这个区域内的「准峰值限制」正好比「平均限制」高10dB。所以,在150 kHz至500 kHz之间,CISPR准峰值限制曲线(传导式EMI)的任一点之dBμV值可由下式求出:

(dBμVQP)= -19.07Хlog(?MHZ)+50.28

同样的,上式也可以改写成:

(dBμVQP)= -20Хlog(?MHZ)+50

CISPR 22类别B在150 kHz至500 kHz之间的限制值,实际上是上述的化约式。 就数学定义而言,AХlog(?MHZ)+c是一条直线(如果水平轴具有对数刻度),其斜率为A,当频率(f)为1MHz时,它通过c点。就CISPR 22类别B而言,虽然它的dBμV直线在500 kHz处被截断,但是它的渐近线(asymptote)仍会通过40或50dBμV,这分别是「均限曲线」和「准峰值限制曲线」的c点(亦即,频率为1MHz时的dBμV值)。

例如:当频率为300 kHz时,CISPR 22类别B的EMI限制值是多少呢?利用上述的公式,均限值等于:
-19.07Хlog(0.3)+40.28=50.25dBμV

因为准峰值限制比均限值多10 dB,所以它是60.25 dBμV。

比较表一中的准峰值限制,是否意味着当超过450 kHz时,FCC标准会比CISPR 22严格?首先,FCC标准是以美国国内的电源电压为测量基准;而CISPR则是使用更高的电源电压来测量。所以这是「淮橘成枳」的问题,不能相提并论。此外FCC虽然没有定义均限值,但是当CISPR 22的准峰值限制和均限值之差超过6 dB以上时,它放宽了限制(约13 dB)。因此,在实务上,符合CISPR标准的产品也会符合FCC的标准。

有人说:「频率大约在5 MHz以下时,杂讯电流倾向于以差模为主;但在5 MHz以上时,杂讯电流倾向于以共模为主。」不过这种说法缺乏根据。当频率超过20 MHz时,主要的传导式杂讯可能是来自于电感的感应,尤其是来自于输出缆线的辐射。本质上这是共模。但对一个交换式转换器而言,这并不是共模杂讯的主要来源。如表一所示,标准的传导式EMI限制之频率测量范围是从150 kHz至30 MHz。为何频率范围不再向上增加呢?这是因为到达30 MHz以后,任何传导式杂讯将会被主要的导线大幅地衰减,而且传输距离会变短。但缆线当然还会继续辐射,因此「辐射限制」的范围实际上是从30MHz到1GHz。
 
 
结语


来自电源电路的EMI是很难察觉的。因为工程师都习惯将电源供应器想像成一个「干净的」电源,殊不知,越是习以为常的元件,越可能是会发射EMI的「黑盒子」。

相关推荐

绝大多数PCB厂商所不知道的秘密

PCB  EMI  2013-08-15

电子电路设计中EMC/EMI的模拟仿真

EMC  EMI  模拟仿真  电路设计  2011-05-25

用隔离变压器降低UPS输出零地电压

UPS  EMI  2011-05-04

磁珠在PCB电路设计中的选用

磁珠  EMI  PCB  2011-03-23

基于软开关技术的PWM变频调速系统

PWM  EMI  软开关  变频调速  2011-03-23

Maxim推出1mm x 1mm D类放大器

2011-01-24
在线研讨会
焦点