首页 » 技术文章 » 基于平均Q因子的可重构光网络性能监控

基于平均Q因子的可重构光网络性能监控

作者:周振洪 诸波  时间:2010-05-10 09:17  来源:EDN

   3 仿真实现

  图3所示是该光网络性能监控系统的仿真流程图。可以用一个余弦信号加随机正态噪声来模拟光纤中传输的信号(包括伪随机二进制序列的NRZ码信号和自发辐射噪声),以得出初始Q值。然后选择恰当的输入信号抽样点,可以周期为单位,两抽样点之间间隔为T+n·t,再将抽样值放人一个一维数组中。之后再按照抽样值电平的范围,对一维数组中的抽样值进行统计,并根据统计值绘制振幅高斯分布图。最后根据高斯分布图求得平均估计Q值。这样,将初始Q值和平均估计Q值进行比较,就可以得到两者之间的关系图。

  4 仿真结果

  选取不同的抽样点数和抽样间隔,即可在不同的初始Q 值情况下,得出表1和表2所列的平均Q值。

  由表1和表2可知,在抽样过程中,当抽样点数较少时,两抽样点之间的间隔 T+n·t对仿真结果有较大的影响,测试结果往往不能反映实际Q值。一般地,当抽样点大于40000个,由抽样位置不同造成的平均Q值之间的差别小于 0.01,而仿真结果与抽样位置(T+n·t)基本无关。由于系统不需要时钟定时提取,抽样点位置是随机的,故可能取到函数值为0处,从而导致平均Q值比初始Q值小很多。但平均Q值是稳定的,仍然可以反映初始Q值的大小。笔者得出的初始Q值和平均Q值之间的关系如图4所示。

  由表1、表2和图4可知,当初始Q值由6降低到5时,单波长信道的平均Q值从 3.0086降到2.9082,降低了0.1004。而在抽样点大于20000时,抽样位置导致的波动小于0.002,此时,Q值的劣化是可以被监测到的。

  在波分复用系统中(4个波分),同样取20000个点进行仿真。当其中某一波长信道的初始Q值由6降低到5时,其它3个信道的Q值仍然为6,此时,四波长系统的平均Q值从3.0085降到2.9835(降低了0.025),抽样位置导致的波动误差也是小于0.002,此Q值的劣化也可以监测。所以,该方法可以用于波分复用系统中。

  进一步的仿真还表明,在n个信道的波分复用系统中,某一波长信道的Q值下降导致的平均Q值下降为该波长系统的1n,所以抽样位置导致的波动误差必须更小。仿真表明,16个波分复用系统中的抽样点数应该大于80000个。

  5 结束语

  本文主要探讨了一种基于平均Q因子可重构光网络性能监控技术。此方法利用异步眼图抽样。不需要时钟同步。文中通过大量数值仿真得出了抽样点数对估计Q值的直接影响。结果表明:抽样点数小于5000个时,不能反映实际结果。当测试点数大于40000个以上时,可以测试多波长系统的实际 Q值。此方法不但可以快速监测可重构多波长光网络的性能,而且比特率透明,结构简单,容易实现。对于实际的可重构光网络的维护和测试且有重要意义。

相关推荐

新一代光网络体系架构瞄准五大方向

光网络  核心网  2011-08-12

Wi-Fi技术在光网络单元中应用方案设计

EPON  光网络  2011-05-13

中广核布局亚太清洁能源市场

三种光网络布线技术优劣势对比分析

光网络  ATM  2010-11-12

基于平均Q因子的可重构光网络性能监控

光网络  可重构  2010-05-10

光速Wi-Fi

Wi-Fi  通信  光网络  2010-04-13
在线研讨会
焦点