首页 » 技术文章 » 现场可编程门阵列的供电

现场可编程门阵列的供电

作者:  时间:2010-04-29 09:55  来源:EDN
  FPGA概述
  现场可编程门阵列(FPGA)是一种可编程逻辑器件,由成千上万个完全相同的可编程逻辑单元组成,周围是输入/输出单元构成的外设。制造完成后,FPGA可以在工作现场编程,以便实现特定的设计功能。典型设计工作包括指定各单元的简单逻辑功能,并选择性地闭合互连矩阵中的一些开关。为确保正常工作,FPGA必须运用适当的电源管理技术。FPGA最初用于系统原型制作,最终量产时会用高速ICASIC代替。不过,近年来FPGA的性能有很大改善,成本则不断下降,因此FPGA现已广泛用于生产设计。
  FPGA的功耗取决于许多不同因素,与设计密切相关。必须运用精确的功耗估算方法,才能确保电源系统符合FPGA要求。FPGA制造商会提供网络工具,用于功耗计算。为了估算FPGA的功耗,计算程序需考虑设计资源运用、切换速率、工作时钟频率、I/O使用及其它许多因素。
  FPGA主要有三种可配置元件:可配置逻辑模块(CLB)I/O模块(IOB)和互连。其中,CLB提供功能逻辑元件,IOB提供封装引脚与内部信号线之间的接口,可编程互连资源提供路由路径,将CLBIOB的输入和输出与适合的网络相连。CLB(或内核)上施加的电压称为VCCINTVCCOIOB的电源电压。一些FPGA还有其它电压输入,称为VCCAUXVCCINT(用于CLB)的典型值为1.0V1.2V1.5V1.8V2.5V3V,电流可达10A或更高。CLB数量越多,则电压越低,电流越高。启动时,VCCINT必须单调上升,不得下跌。最常用的VCCO电压(用于IOB)为1.2V1.5V1.8V2.5V3.3V或传统系统中的5V。电流范围为1A20A。辅助电压(VCCAUX)典型值为3.3V2.5V。它为FPGA中的时间关键资源供电,因此易受电源噪声影响。VCCAUX可以与VCCO共用一个电源层,但前提是VCCO不会产生过大的噪声。
  FPGA使用的电源类型
  FPGA电源要求输出电压范围从1.2V5V,输出电流范围从数十毫安到数安培。可用三种电源:低压差(LDO)线性稳压器、开关式DC-DC稳压器和开关式电源模块。最终选择何种电源取决于系统、系统预算和上市时间要求。
  如果电路板空间是首要考虑因素,低输出噪声十分重要,或者系统要求对输入电压变化和负载瞬变做出快速响应,则应使用LDO稳压器。LDO功效比较低(因为是线性稳压器),只能提供中低输出电流。输入电容通常可以降低LDO输入端的电感和噪声。LDO输出端也需要电容,用来处理系统瞬变,并保持系统稳定性。也可以使用双输出LDO,同时为VCCINTVCCO供电。
  如果在设计中效率至关重要,并且系统要求高输出电流,则开关式稳压器占优势。开关电源的功效比高于LDO,但其开关电路会增加输出噪声。与LDO不同,开关式稳压器需利用电感来实现DC-DC转换。
  FPGA的特殊电源要求
  为确保正确上电,内核电压VCCINT的缓升时间必须在制造商规定的范围内。对于一些FPGA,由于VCCINT会在晶体管阈值导通前停留更多时间,因此过长的缓升时间可能会导致启动电流持续较长时间。如果电源向FPGA提供大电流,则较长的上电缓升时间会引起热应力。ADI公司的DC-DC稳压器提供可调软启动,缓升时间可以通过外部电容进行控制。缓升时间典型值在20ms100ms范围内。
  许多FPGA没有时序控制要求,因此VCCINTVCCOVCCAUX可以同时上电。如果这一点无法实现,上电电流可以稍高。时序要求依具体FPGA而异。对于一些FPGA,必须同时给VCCINTVCCO供电。对于另一些FPGA,这些电源可按任何顺序接通。多数情况下,先给VCCINT后给VCCO供电是一种较好的做法。
  当VCCINT0.6V0.8V范围内时,某些FPGA系列会产生上电涌入电流。在此期间,电源转换器持续供电。这种应用中,因为器件需通过降低输出电压来限制电流,所以不推荐使用返送电流限制。但在限流电源解决方案中,一旦限流电源所供电的电路电流超过设定的额定电流,电源就会将该电流限制在额定值以下。
  FPGA配电结构
  对于高速、高密度FPGA器件,保持良好的信号完整性对于实现可靠、可重复的设计十分关键。适当的电源旁路和去耦可以改善整体信号完整性。如果去耦不充分,逻辑转换将会影响电源和地电压,导致器件工作不正常。此外,采用分布式电源结构也是一种主要解决方案,给FPGA供电时可以将电源电压偏移降至最低。
  在传统电源结构中,AC/DCDC/DC转换器位于一个地方,并提供多个输出电压,在整个系统内分配。这种设计称为集中式电源结构(CPA),见图1。以高电流分配低电压时,铜线或PCB轨道会产生严重的电阻损耗,CPA就会发生问题。

1 集中式电源结构
  CPA的替代方案是分布式电源结构(DPA),见图2。采用DPA时,整个系统内仅分配一个半稳压的DC电压,各DC/DC转换器(线性或开关式)与各负载相邻。DPA中,DC/DC转换器与负载(例如FPGA)之间的距离近得多,因而线路电阻和配线电感引起的电压下降得以减小。这种为负载提供本地电源的方法称为负载点(POL)

2 分布式电源结构
  当一个逻辑器件从逻辑1切换到逻辑0时,或者从逻辑0切换到逻辑1时,包括电源的输出结构暂时变为低阻抗状态。每次转换均要求对信号线进行充电或放电,这就需要能量。旁路电容的功能是在本地储存能量,以提供转换所需的能量。
  本地储存能量必须在较宽的频率范围内可用。低串联电感的非常小的电容用来为高频转换提供快速电流。高频电容能量耗尽之后,较大、较慢的电容继续提供电流。FPGA技术要求三种频率范围内的电容,即高、中、低频率范围。这些频率的跨度为1kHz500MHz
  正确放置对于高频电容(1nF100nF低电感陶瓷片式电容)非常重要;对于中频电容(10μF100μF钽电容或陶瓷电容)和低频电容(>470μF),这种重要性依次降低。之所以与放置有关,原因很简单:从电容引脚到FPGA电源引脚的路径电感必须尽可能低。这意味着该路径必须尽可能短,哪怕要穿过实体接地层或电源层。1英寸实心铜层的电感约为1nH,因此距离极为重要。旁路电容过孔必须直接下行至接地层或VCC层。

相关推荐

没有退路的FPGA与晶圆代工业者

FPGA  晶圆代工  2014-01-03

集成LIN系统基础芯片功能的三通道半桥驱动控制器

艾尔默斯  LDO  MCU  2013-11-04

采用FPGA的可编程电阻的设计结构分析

FPGA  电阻  2013-09-24

从FPGA的制程竞赛看英特尔与Fabless的后续变化

FPGA  Fabless  2013-07-16

物联网融合自动化推动高效生产模式变革

物联网  FPGA  SoC  2013-07-09

14纳米FPGA展现突破性优势

14纳米  FPGA  2013-06-20
在线研讨会
焦点