首页 » 技术文章 » 精确信号路径应用中的新兴技术

精确信号路径应用中的新兴技术

作者:  时间:2010-05-25 09:22  来源:EDN

  在各种条件下实现精确性

  各种应用始终需要更精确的测量和检测。不仅在初期需要更高的精确性,还应在长时间和各种温度条件下保持高精确性。这必须通过现代系统的性能/效率要求来实现。随着技术的进步,容许误差将逐步减小。但校准操作并不简便,而在当今更须花费成本和时间。目标是设计在更长时间和更大温度范围内保持高精度的系统。

  美国国家半导体对传感和检测系统定义了多个精确度等级。精确度范围从14,将在以下的表3中详述。

  级别2和级别4产品持续校正某些误差,并在生命周期内自行校正漂移。级别2产品仅持续校正电子装置内的误差,但不补偿传感器内发生的漂移。级别4产品补偿传感器内的误差,因为传感器是整体系统的组成部分。

  动态失调和增益校对需要能够迫使传感器输入信号为零级别和一个或多个参考级别。这仅在某些应用程序中可以实现,因此很难建立级别4系统。

  最佳放大器的选择原则

  放大器技术的选择在很大程度上取决于系统应用和指定的参数,例如运算放大器输入级的电压范围、应用可以接受的最大输入偏置电流值、应用信号频率范围以及可接受的各温度条件下失调漂移范围和各时间阶段的漂移。图1中的范例显示了桥式传感器接口。在此应用中,需要具有低漂移和电压噪声运算放大器支持精确的信号放大。LMP2021的先进技术和部件内电路能自动校正失调和增益漂移等误差,非常适合于此类应用。LMP2021被划分为级别2构建块产品。过去一直使用无内部修整或校正装置的部件,例如一般运算放大器、低噪声运算放大器和低漂移运算放大器。在使用这些部件的电路中,必须通过外部组件实现增益和失调电压控制,例如修整电位计或修正电阻器。但通过集成电路的修整能力可以实现更高的精确度。

  另一个关键参数是最大输入偏置电流值。以LMP2021为例,其优点是能提供低偏置电流的CMOS输入。通过LMP2021可以实现传感器内具有高串联电阻的应用,且无需传感器负载。如:偏置电流(3pA)产生的传感器阻抗(例如10兆欧姆)电压降是30uV

  EMI是精确应用中日益突出的问题。称重衡器中的注入射频信号可能产生高达1V的输出失调电压,从而导致在无滤波的情况下使ADCENOB(有效位数)减小。

  此外,可以使用单一电源最大限度增大模数转换器(ADC)的动态范围。出于节省成本的考虑,很多系统只使用单一电源供电。美国国家半导体的精确负偏置发生器(LM7705)结合使用放大器后,能为负轨提供真正的零电压摆幅,实现真正的轨对轨能力。此前输出都存在失真。LM7705产生-0.230V输出电压。对于运算放大器,可以通过将LM7705输出接地或连接到运算放大器的负电压针脚实现零电压输出。现在,LMP2021/22的输出能够传输到地面达到最高4.917V(采用5V系统)

  单路LMP2021和双路LMP2022是零漂移、低噪声、EMI硬化的运算放大器,每摄氏度只有0.004uV的输入失调电压漂移(TCVos),典型Vos0.4uV。两种装置都在2.2V5.5V的电源电压范围内工作,提供5MHz的增益带宽(GBW),每通道仅消耗1.1mA电流。LMP2021/22运算放大器提供160dB开环增益(AVOL),超过139dB CMRR130dB PSRR的性能。两种装置均可以在-40摄氏度125摄氏度的扩展温度范围内工作。

  凭借上述参数的结合,该自动调零运算放大器系列成为业界领先的产品。

相关推荐

传感器融合为什么会对制造业有利?

传感器  自动化  2013-12-31

如何让高整合传感器降低平均功耗

传感器  太阳能电池  2013-12-04

自动化生产中传感器的重要性

飞行器  传感器  2013-12-03

智能尘埃:随时随地追踪一切的传感器

智能尘埃  传感器  2013-11-26

国内传感器产业优势及未来走向解析

传感器  物联网  2013-11-20

物联网时代传感器未来的发展方向

物联网  传感器  2013-11-06
在线研讨会
焦点