首页 » 技术文章 » 基于现代DSP技术的QPSK调制器的设计

基于现代DSP技术的QPSK调制器的设计

作者:  时间:2011-05-18 20:07  来源:EDN

   图2中,由频率字、延时器、加法器和两个LUT组成正交信号发生器,产生两个正交的载波信号。随机信号发生模块产生随机信号,经过反相器形成数字基带信号,经过串并转换模块变为并行信号,再经过多路选择器模块输出+1-1,然后和正交信号发生器产生的正交载波信号相乘,最后在加法器中进行相加实现QPSK调制。

  3系统仿真与硬件测试

  31 系统仿真

  完成整个设计后,设置仿真时间,开始仿真。设置Simulik的仿真停止时间为2 000,仿真步进设为自动。仿真结果如图3,图中前两栏为正交波信号,最后一栏为QPSK已调信号。

  32 硬件测试

  在Simulink中完成仿真验证后,需要把设计转到硬件上去实现。这是整个DSP Builder设计流程中最为关键的一步,可获得对特定FIGA芯片的VHDL代码。双击QPSK模型中的SignalCompiler,点击分析按钮,检查模型无错误后,打开SignalCompiler窗口,在图中设置好相应项后,依次点击123 3个按钮,逐项执行VHDL文件转换、综合、适配,即可将.mdl文件转换为.vhd文件。同时,在工作目录生成的文件中有tb_qpsktcltb_qpskv文件。tb_qpskv文件是在QuartusII中要用到的工程文件,tb_qpsktcl文件是要在Modesim进行RTL级仿真用到的测试代码。仿真完成后,在QuartusII中指定器件管脚、进行编译、下载。最后进行硬件的下载,连接好FPGA开发板即可。本文采用的硬件是Cyclone系列芯片EP2C35F672C6N。图4是在QuartusIIQPSK的已调波形,与仿真波形基本一致。由图可以看出,有4个相位跳变点,正确地反映了QPSK调制的特点。

  4 结论

  本文利用了现代DSP技术的功能,在Simulink的环境下实现了QPSK的建模,给出了具体模型,从而避免了VHDL程序的编制,缩短了周期,提高了效率。采用该法,极大地提高了电子系统设计的灵活性和通用性。仿真结果和硬件实现都验证了该方案的正确性。

相关推荐

没有退路的FPGA与晶圆代工业者

FPGA  晶圆代工  2014-01-03

采用FPGA的可编程电阻的设计结构分析

FPGA  电阻  2013-09-24

从FPGA的制程竞赛看英特尔与Fabless的后续变化

FPGA  Fabless  2013-07-16

物联网融合自动化推动高效生产模式变革

物联网  FPGA  SoC  2013-07-09

14纳米FPGA展现突破性优势

14纳米  FPGA  2013-06-20

高清视频监控FPGA应用迎来小高峰

视频监控  FPGA  2013-06-20
在线研讨会
焦点