首页 » 技术文章 » EPON系统的三层路由及其接口设计

EPON系统的三层路由及其接口设计

作者:  时间:2011-06-29 21:13  来源:EDN

  0引言

  以太网无源光网络(EPON)系统要达到电信级技术标准,提高局端设备光线路终端(OLT)运行的可靠性是其面临的长期挑战。随着网络扁平化概念的提出,具有大容量、少局所、高交换性能的汇聚型OLT经过一个MSTP网络就可以接入骨干网[1]。根据运营局方的需求,当MSTP传输网内部故障时,不需要维护人员的直接干预,OLT能参与链路倒换并帮助实现网络自愈。理论上接入网OLTMSTP传输网以及骨干网可以采用分段保护方案,例如OLT上联双归属保护OLT-MSTP的链路,MSTP内部链路的保护由MSTP本身负责,MSTP到上游骨干路由器的链路保护可以通过路由协议实现(收敛时间较长)。但是这种方法增加了网络维护的复杂度,而且现网业务已经部分开通,修改设备的配置存在一定风险。如果采用VRRP方案,由于只是MSTP网内部的链路状态发生改变,当VRRP发生主备切换时,原有主用接口状态并没有发生变化,接口还是处于UP状态,该路由还会继续宣告,从而导致下行流不通。基于OSPF协议的路由方案由于具有配置简单,风险可控,维护管理方便的特点,因而被本设计采用。

  1 OLT上的三层接口设计

  1.1 VLAN技术在OLT上的应用

  作为交换式以太网设备的一种,EPON系统OLT对数据链路层技术有着强大的支持能力,例如二层VLAN技术的广泛应用。VLAN的划分方法有3种:802.1Q VLAN、基于端口的VLAN和基于MAC地址的VLAN[2]OLT上的二层业务VLAN运用802.1Q实现VLAN标记(tag)从而将VLAN延伸到整个网络,而802.1Q VLAN的去标记(untagged)则使得OLT可以和所有合法的、无法识别VLAN标记的交换机一起工作;OLT还有一些内部保留VLAN是基于端口划分,加入同一个VLAN的端口形成一个广播域,可以实现二层互通,不在同一个VLAN内的端口之间在二层则不能直接通信。传统OLT上比较特殊的一个(或多个)VLAN是管理VLAN,这种VLAN可以配置IP地址来和网管服务器进行通信,方便网络管理员对OLT进行配置管理。

  在传统意义的三层设备中,VLAN是指三层虚接口,它们可以配置IP地址形成路由接口。因此,在OLT上实现三层路由首先必须创建三层接口。本设计采用SUPER-VLAN技术来解决二层VLAN和三层接口的矛盾。SUPER-VLAN也叫VLAN聚合,由SUB-VLANSUPER-VLAN组成,它的SUB-VLAN是二层实VLAN,不同VLAN之间在二层不能互通;SUPER-VLAN是三层虚VLAN,多个SUB-VLAN可以添加到同一个SUPER-VLAN,然后在SUPER-VLAN上配置IP地址形成三层接口。路由接口是OSPF方案设计进行的基础。

  1.2基于SUPER-VLAN技术的三层接口设计

  OLT上的三层接口由SUPER-VLAN来提供,SU-PER-VLAN三层转发的基本原理如下[3]:如图1所示,PC1PC3属于不同的SUPER-VLAN,即不同的网段。垮网段设备的通信需要通过三层接口交互。PC1PC3通信的过程如下:

   通过比较IP地址和掩码PC1知道PC3与自己不在同一个网段,PC1向网关发送一个ARP报文请求网关的MAC

   网关SUPER-VLAN 100回应自己的MAC 00-00-00-00-00-01PC1

   PC1收到应答后发送目的MAC00-00-00-00-00-01、目的IP3.3.3.1的报文;

   SUPER-VLAN 100收到报文后发现目的MAC是自己的MAC,就知道是三层转发,从而去查三层转发表;

   查找到下一跳的出口是SUPER-VLAN 200,就把报文发给SUPER-VLAN 200

   SUPER-VLAN 200收到报文,将报文转发给PC3

  现在考虑PC1PC2的通信流程。比较PC1PC2IP地址可以知道二者同属于一个子网,PC1就会广播ARP报文请求PC2MAC。而由于PC1PC2不在同一个SUB-VLAN中,ARP广播报文不能到达PC2。此时,SUPER-VLAN就需要发挥它的另一个重要作用--ARP PROXYSUPER-VLANARPPROXY功能工作流程如下:

   PC1广播一个ARP报文请求PC2MAC

   SUPER-VLAN 100发现PC2不在SUB-VLAN1内,就代理接受该ARP报文;

   SUPER-VLAN100SUB-VLAN 2内广播ARP报文请求PC2MAC地址;

   PC2应答ARP请求,将自己的MAC 00-00-00-00-00-03发送给SUPER-VLAN 100;

    SUPER-VLAN 100作为网关应答PC1ARP请求,将自己的MAC 00-00-00-00-00-01当作PC2MAC发送给PC1。后续PC1发送给PC2的报文就会将带上目的MAC 00-00-00-00-00-01、目的IP 1.1.1.2的报文发送给SUPER-VLAN网关,网关收到该报文后将自己的MAC替换成PC2MAC 00-00-00-00-00-03,并把报文按照学习到的路由发送给PC2

  2路由软件设计

  2.1路由管理模块设计

  路由可以分为静态路由和动态路由两大类。静态路由由网络管理者直接配置产生,动态路由由路由协议学习生成。为了实现软件路由表和交换芯片路由表的同步和路由择优等功能,需要进行路由信息收集、过滤、优选等操作,因此系统中需要路由管理模块维护不同的路由表项。路由管理模块(RTM)位于各软硬件平台驱动层之上,三层功能协议层及管理层之下,是三层功能实现的核心模块。根据设计,它在系统中需要完成的工作如下:

   管理员配置添加三层接口,包括添加SUPER-VLANSUB-VLAN以及IP

   接口管理模块向路由管理模块通告接口事件,如接口的UP/DOWN事件;

   协议模块学习到动态路由,进行动态路由的添加/删除;

   路由管理模块处理接口变化事件,并通知各三层功能协议模块;同时管理来自协议模块的动态路由的写入与删除;

   OS IP协议栈ARP功能提供主机路由表的维护,并向路由管理模块提供路由条目中下一跳Gate-way相关的ARP功能;

   交换芯片驱动为路由管理模块提供硬件FIB表的删除与写入功能。

   OS IP协议栈向路由管理模块提供硬件FIB表的删除与写入功能。

  对应上述功能,设计将路由管理模块划分成更小的模块来分别实现。如图2所示,路由管理模块(RTM)由路由表控制模块(RTM_CTRL)、主机路由控制模块、管理与配置模块、动态路由消息处理模块、接口消息处理模块、操作系统适配层以及驱动适配层组成。

  路由表(RIB table)由节点链表组成,每个节点表示到达一个目的网段的所有路由。如图3所示,每一个node中都记录3RIB表,分别是RIB-active表、RIB-standby表和RIB-pend表,每一个表的子项都是到达该目的网段的路由信息,即RIB路由条目、RIB里面记录路由类型(RIP/OSPF/静态等)、下一跳网关、距离、metric和生成时间等。

  RIB-active中的RIB路由表示当前激活的路由,该路由会被写入到硬件FIBOS FIB中去,实现业务流的三层转发功能。通常一个目的网段只有一个active路由。

  RIB-standby中的路由条目是可到达但不是最优路径的路由,当active路由不可用时,路由管理模块会在standby RIB找一个最优路由升级为active路由。

  RIB-pend路由表中的路由是由于该路由的下一跳网关不可达(查ARP表)而暂时挂起的路由路径,当下一跳网关可达后,该路由会升级为standby路由或者是active路由。

相关推荐

博通新的EPON OLT单芯片系统成本和功耗降低50%

Broadcom  EPON  单芯片  2011-11-15

NG-PON发展 共存是王道

GPON  EPON  2011-09-19

高通博通国际双雄 决战中国EPON芯片市场

高通  EPON  2011-08-19

NG-PON发展 共存是王道

GPON  EPON  拉曼串扰  2011-07-18

Qualcomm Atheros推出超低能耗EPON芯片QCA8829

Qualcomm  EPON  2011-07-14

EPON系统的三层路由及其接口设计

EPON  OLT  2011-06-29
在线研讨会
焦点