1. 数字滤波系统
心电信号是微弱低频人体生理电信号,通常频率在0.05~100Hz,幅值不超过4mv,通过安装在皮肤表面的电极来获取。由于人体是一个复杂的生命系统,存在50H 工频干扰及基线漂移等其他生理电信号的干扰。噪声可能会影响到医生的临床诊断,因此,需对心电信号进行滤波,即必须做好前端数据采集的软硬件设计以保证心电数据的可靠和准确。
传统医疗设备分别采用50Hz 带阻滤波器和RC 高通滤波器滤除工频干扰和基线漂移。但带阻滤波器电路复杂,其特性对元器件的精度敏感,而基线漂移本质上是一种缓慢变化的低频信号,采用RC 滤波器很难将高通滤波器的过渡带做得十分陡峭,基线漂移补偿效果不理想。因此,
数字滤波方法有具有许多优点[3],ECG 数字滤波系统组成如图1 所示,来自各电极的多路心电微弱信号经多路输入缓冲器缓冲放大,经导联选择电路进行选择后,由前置放大电路放大,进行电压放大以适应A/D 转换的幅度要求,然后进行数字滤波并输出心电信号。数字滤波用于心电信号消噪,不仅能提高仪器设备的性能,而且对于不同的使用环境(例如对于不同国家的50Hz 或60Hz 供电条件),只需重新设置软件参数即可,大大降低了医疗设备硬件复杂程度,降低了产品成本、提高了通用性。
点击看原图
图1. 心电信号数据采集与处理框图
2.工频干扰滤波
对于心电信号中的工频干扰,简单而有效的方法是采用梳状滤波器滤波,这种FIR 滤波器简单、容易实现、滤波效果好,节数为N 的梳状滤波器的系统函数为:
其中,是由N 节延时单元组成的梳状滤波器,H1(z)的幅值响应由许多频率间隔相同的通带和阻带组成,它只许一些特定频率范围的信号通过而阻止另一些特定频率信号通过[4]。H(z)的频率响应为:
根据式(2)可知,梳状滤波器是具有线性相位的FIR 低通滤波器,相移τ=(N-1)/2,为使滤波器的直流增益为1,可以考虑在H(z)中增加增益因子1/N,归一化后的幅频响应为:
N=10 时,幅频响应如图2 所示,在频率点ωk=2πk/N,k=0,1,2,……N-1 处的幅值为0,因而在ωk=2πk/N 附近形成了多个阻带,对这些频率的信号具有很好的抑制作用。由于梳妆滤波器的系数相等且都为1,因而容易实现,常用于对医疗仪器中的特定信号进行滤波处理。
图2. 线性相位FIR 滤波器的幅频响应特性
根据图2 可得第一旁瓣峰值衰减约为20dB,若不能满足要求,可对式(1)进行修正:
其频率响应为:
衰减速度为修正前的k 倍,k=2 时修正滤波器的幅频响应如图3 所示,其衰减性能更好。
图3. 经修正以后的梳状滤波器幅频响应
3.基线漂移的抑制
抑制基线漂移方法很多,各有特点。基于抛物线的拟合基线算法结构复杂,采用单片机的嵌入式系统运算速度难以保证实时性要求[2],基于小波的自适应滤波抑制ECG 基线漂移,运算较复杂,不适合用于小系统的监护。本文采用一种自适应快速线性拟合来抑制基线漂移的方法,通过多点采样,用最小二乘法拟合出基线的变化趋势,经修正得到ECG 信号。
3.1 QRS 波群的探测
理论上,两个连续QRS 波群之间的T-P 段代表了实际的ECG 基线水平。根据每一个心动周期的P-R 段特征点,在两个特征点之间进行插值,然后再进行曲线拟合,即将插值和曲线拟合结合起来,就可以得到基线漂移曲线,原始信号减去基线漂移曲线即为ECG 信号。因此,采用分析斜率、幅度和宽度的方法来识别QRS 波群[5]。根据ECG 的功率谱,QRS 波群的能量主要集中在15Hz 频率左右,为消除ECG中其它频率成分对QRS 波群检测的影响,需设计一个中心频率为15HZ 的带通滤波器,ECG 信号通过该滤波器时对R 波以外的频率成份进行了衰减。当采样频率为500Hz 时,该滤波器的传递函数如下:
由于R 波含有丰富的高频谐波成分,为突出高频谐波分量,采用如下微分器:
经处理后的信号通过带通滤波器和微分器后,P 波和T 波都有显著的衰减,相应的QRS 波群的峰值进一步加强,为消除微分器处理后散粒随机噪声产生的干扰,可以采用式(7)所表示的积分器进行修正: