RMS可以视为一个通用的测控设计平台,其硬件基本结构如图1所示。
点击看原图
该测控系统由主控计算机和相对独立的基于FPGA器件的测控系统两大部分,通过通信接口连接而成。主控计算机主要实现人机对话功能,包括测试数据的处理、显示及仪器软面板的控制,可以利用虚拟仪器技术实现。基于FPGA器件的测控系统包括数据采集与输出控制单元、FPGA单元和DSP单元,3个单元均有可重构功能,并接受主控制器单元的控制。基本功能块是指作为计算机系统通用的不可或缺的电源、系统监控模块及存储器模块。
2.2.1 可重构数据采集与输出控制单元
该单元作为RMS的前向、后向通道与被测控对象直接相连。其中的信号调理电路可以设计成通用形式,并根据测控对象的数量、量程、
2.2.2 可重构FPGA单元和可重构DSP单元
FPGA单元和DSP单元的功能可以预先根据实际测试对象的需要进行合理划分,并在主控计算机上以IP核的方式完成设计、仿真、测试和整合的全过程,最后的配置数据流文件预先存放于相应的配置存储器中(一般为SRAM或Flash存储器)。这种静态重构方式适用于对配置实时性要求不太高的一般场合,选用基于SRAM的FPGA器件和通用DSP即可。如果对配置切换的实时性要求较高,则可以选用特定的适于动态配置的FPGA器件,但成本要高昂得多。
2.2.3 可重构主控制器
主控制器单元是实现可重构功能的关键部分,它既是测控系统与主控计算机数据传递的通道,又是数据采集与输出控制单元、FPGA单元和DSP单元的控制中枢。在系统重构模式下,它接收主控计算机的重构指令和数据,对FPGA和DSP的配置存储器进行在线编程;在正常测控模式下,主控制器从FPGA和DSP获得采集和处理的数据,并送主控计算机处理。
主控制器的设计可以根据系统规模合理选择,可以采用通用MCU(如51系列单片机)、嵌入式SoC(如ARM);也可利用FPGA器件实现,例如选用A1tera公司的Nios软处理器核基于SOPC方法进行设计。
2.2.4 通信结构
RMS通信结构的选择对系统的工作速度、实时性以及成本来说至关重要。
从通用性角度考虑,RMS的通信结构可以根据系统规模的需要选择不同的形式。大型测控系统可以选用专用测控总线(如GPIB、CPI、CPCI等),以标准化、模块化插卡形式与主控计算机相连;小型系统则可以根据需要选用通用总线(如RS232、UART、USB、CAN总线),有选择地添加可编程I/O口、
值得注意的是,测控系统的通信结构设计不仅要包括系统总线的设计,还包括FPGA片内通信结构的设计。典型的可重构FPGA片内通信结构通常有片上总线和片上网络两种策略。片上网络结构虽能较好地体现结构参数要求,但面积花费巨大;而片上总线结构凭借灵活性高、可延展、设计开销小、带宽要求较低、时延较短等优点,成为RMS的首选。考虑到FPGA的配置需要,在通信模块、主控制器模块和FPGA器件内都应设计相应的JTAG接口,以满足数据流配置和在线测试的需要。
2.2.5 软件重构
软件重构是作为软硬件协同设计实现的测控系统重构的必要内容。传统的测控软件常常是针对具体的测控、对象和硬件资源设计的,从而限制了不同型号、不同厂家、不同硬件接口的测控器件的使用。为实现测控系统的软件重构,应打破传统测控软件的设计思路,采用“基于程序框架和可复用构件”的软件复用思路”。如图2所示,将测控软件划分为测控软件平台和测控驱动程序两部分,其间通过软件平台提供的软件接口来实现动态链接。测控软件平台主要实现主控计算机功能的控制,以及主控计算机与测控系统的驱动程序之间的数据通信。
测控终端应用软件的可重构、可识别包含两个方面:其一,测控软件平台的可重构,即不同测控应用的软件平台能够识别相同的控制指令,准确完成主控计算机分配的测控任务;其二,测控驱动程序的可重构,即各种不同类型的测量、控制应用的驱动程序可以动态链接到软件平台上,实现“热拔插”。
测控软件的重构平台有多种选择:可以是专用的基于图形化GUI的虚拟仪器软件,如Labview(通过CLF节点实现与仪器驱动程序的接口,仪器驱动程序以动态链接库的形式给出,将与仪器有关的I/0操作都封装成函数,并通过访问USB或其他接口驱动实现数据的输入、输出);也可以采用通用的可视化软件编程环境,如VB、VC等。对于小型、较简单的测控系统,推荐选用图形化、高效的Labview。
3 基于CPCI总线的RMS的实现
下面给出的实例是应用于雷达信号实时侦测的基于CPCI总线的RMS。传统的雷达侦测,由于信号特征和处理方式不同,需要研制多种独立的侦测卡(如脉冲雷达侦测卡、连续波雷达侦测卡、敌我识别信号侦测卡等十几种设备)及对应测控软件。采用通用的硬件平台,由1个CPCI
点击看原图
图3中,核心器件——可重构主控制器EP2$30是通过可重构FPGA和DSP器件来连接信号采集与控制处理输出部分,实现测控功能的控制中心通过CPCI总线与主控计算机进行数据交换的通道。基于SOPC的设计思想.使用Altera公司的NiosII处理器IP软核及外围逻辑编程实现主控制器功能。主控制器与CPCI控制器通过PCI局部总线交换指令和数据,通过自定义总线和DSP总线与FPGA和DSP交换采集和输出数据。在系统重构模式下,主控制器通过CPCI控制器接收主机的重构指令和数据,对FPGA的配置存储器和DSP的程序存储器进行在线编程;同时也可以直接对FPGA进行在线并行加载,完成系统的硬件重构。在系统正常工作模式下,主控制器把从采集部分获得的实时数据通过CPCI总线传输给主控计算机,或送往DSP进行数据处理并控制输出。
对于数据采集模块和控制输出模块,“可重构”的含义是指其模块组成可以根据测控需要进行裁剪,例如可选用PAD模块、基于FPGA实现的电动机转速控制模块、步进电机控制模块等。
结 语
本文根据测控系统的通用结构模型和FPGA的可重构功能特点,提出了一种基于FPGA器件,针对嵌入式应用有效缩短开发周期和设计与应用成本,满足并行性、多任务、开放化和集成化要求的RMS的平台式设计思想,实现了测控系统“只能由厂家定义、设计,用户只能使用”模式和“单任务”模式的突破。RMS技术在工业现场控制、城市市政管理、智能楼宇监控、智能家居等领域应用前景广阔,在远程重构和网络测控方面亦有研究价值。