>
首页 » 市场趋势 » 40年晶体管技术最大突破 45nm制程工艺解析

40年晶体管技术最大突破 45nm制程工艺解析

作者:  时间:2007-02-01 08:52  来源:天极yesky

制程是架构交叉体系下的性能提升稻草:多年来Intel一直在奉行制程更新与处理器架构体系改变的交叉更替,以确保在制程没有改变的情况下可以借由处理器体系架构的更新来提升产品性能,又或是处理器架构没有改变的情况下借由制程的更新来提升产品性能。就这样,我们从westwood核心到130nm再从90nm到netbeast,然后是65nm到Conroe、kentsfield,那今年Intel毫无疑问的将会在Conroe、Kentsfield上过渡到45nm工艺上,不过这次Intel的工艺转换还加入了一些新的元素。

  所谓的制程工艺,就是指晶体管之间的线宽,如65nm制程就是指晶体管之间的线宽是65nm,但这次Intel 45nm制程的更新不仅是把晶体管间的线宽缩短到45nm,在构成处理器的细胞元件——晶体管上也有着非常重大的突破。

  晶体管其实就是一种简单的开关装置,可处理电子数据中的0、1组合。处理器就是含有数百万此类通过铜线以特定方式连接在一起的晶体管。而晶体管内部是由源极、漏极、栅电极、栅介质、及硅底层通道。源极是指晶体管中电流产生的部分,它包含涂层硅(doped Si),漏极是指晶体管中电流流向的部分,这部分与源极一样,都参杂了一些杂质以降低电阻。不过晶体管是绝对对称的,则电流可以从源极流向漏极,也可以从漏极流向源极。栅极电极就是晶体管顶端的区域,其电流的状态决定晶体管是打开还是闭合,传统上栅的制作材料是多晶硅或原子随意排列且不形成网格状结构的硅。栅极介质是位于栅极电极以及沟槽之间一层薄层,目前的数字芯片中晶体管栅介质是由二氧化硅组成,而二氧化硅是绝缘体材料,它的作用是隔绝来自栅极电极的泄漏电流,但如果这个栅介质层太薄其泄漏电流的电量就越大。

  Intel对晶体管的改进是来自之前晶体管的栅极介质,Intel是使用一种基于铪元素的化合物来替代之前的二氧化硅,这种基于铪元素的High-K介质具备良好的绝缘属性,同时可以在栅极及硅底层之间形成较高的场效应(High-K)。因为High-K的铪化合物比二氧化硅更厚的同时保持着理想的高场效特性,所以,这种High-K材料还可以大幅度减少泄露电流。据Intel官方发布的数据,这种High-K介质可以比之前的二氧化硅材料降低泄漏电流10以上。而同时因为场效的提高,使得晶体管源极到漏极的驱动电流提升20%,源极到漏极的泄露电流降低5倍以上。如果这些数据真的如Intel所公布的一样,那么对于单个晶体管来说我们就可以获得比之前更高的开关效率,以及更低的泄露电流。而对于拥有几亿个晶体管的现代处理器来说,我们可以从中获益是非常可观的,这显然更有利于提升intel处理器的每瓦性能(Performance per watt)。

  虽然基于铪的这种High-K栅介质有着高场效以及绝缘的良好特性,但其却不能使用之前的多晶硅栅极,而是需要应用上一种全新的金属栅极来替代,目前Intel均没有透露这些材料的组成元素以及其具体配方,但在之前的新晶体管发表会时Intel代表却表示,竞争对手想要达到目前Intel 45nm产品晶体管的效能,至少需要到对手下一代的32nm工艺,对于Intel的这种说法我们是持有待考察的态度,毕竟实际的效能表现需要等双方的产品具体发布出来才有正确的答案。

晶体管的发展历史及其重要里程碑

  1947年12月16日:威廉·邵克雷(William Shockley)、约翰·巴顿(John Bardeen)和沃特·布拉顿(Walter Brattain)成功地在贝尔实验室制造出第一个晶体管。

  1950年:威廉·邵克雷开发出双极晶体管(Bipolar Junction Transistor),这是现在通行的标准的晶体管。

  1953年:第一个采用晶体管的商业化设备投入市场,即助听器。

  1954年10月18日:第一台晶体管收音机Regency TR1投入市场,仅包含4只锗晶体管。

  1961年4月25日:第一个集成电路专利被授予罗伯特·诺伊斯(Robert Noyce)。最初的晶体管对收音机和电话而言已经足够,但是新的电子设备要求规格更小的晶体管,即集成电路。

  1965年:摩尔定律诞生。当时,戈登·摩尔(Gordon Moore)预测,未来一个芯片上的晶体管数量大约每年翻一倍(10年后修正为每两年),摩尔定律在Electronics Magazine杂志一篇文章中公布。

  1968年7月:罗伯特·诺伊斯和戈登·摩尔从仙童(Fairchild)半导体公司辞职,创立了一个新的企业,即英特尔公司,英文名Intel为“集成电子设备(integrated electronics)”的缩写。

  1969年:英特尔成功开发出第一个PMOS硅栅晶体管技术。这些晶体管继续使用传统的二氧化硅栅介质,但是引入了新的多晶硅栅电极。

  1971年:英特尔发布了其第一个微处理器4004。4004规格为1/8英寸 x 1/16英寸,包含仅2000多个晶体管,采用英特尔10微米PMOS技术生产。

  1978年:英特尔标志性地把英特尔8088微处理器销售给IBM新的个人电脑事业部,武装了IBM新产品IBM PC的中枢大脑。16位8088处理器含有2.9万个晶体管,运行频率为5MHz、8MHz和10MHz。8088的成功推动英特尔进入了财富(Forture) 500强企业排名,《财富(Forture)》杂志将英特尔公司评为“七十大商业奇迹之一(Business Triumphs of the Seventies)”。

  1982年:286微处理器(又称80286)推出,成为英特尔的第一个16位处理器,可运行为英特尔前一代产品所编写的所有软件。286处理器使用了13400个晶体管,运行频率为6MHz、8MHz、10MHz和12.5MHz。

  1985年:英特尔386™微处理器问世,含有27.5万个晶体管,是最初4004晶体管数量的100多倍。386是32位芯片,具备多任务处理能力,即它可在同一时间运行多个程序。

  1993年:英特尔®奔腾®处理器问世,含有3百万个晶体管,采用英特尔0.8微米制程技术生产。

  1999年2月:英特尔发布了奔腾®III处理器。奔腾III是1x1正方形硅,含有950万个晶体管,采用英特尔0.25微米制程技术生产。

  2002年1月:英特尔奔腾4处理器推出,高性能桌面台式电脑由此可实现每秒钟22亿个周期运算。它采用英特尔0.13微米制程技术生产,含有5500万个晶体管。

  2002年8月13日:英特尔透露了90纳米制程技术的若干技术突破,包括高性能、低功耗晶体管,应变硅,高速铜质接头和新型低-k介质材料。这是业内首次在生产中采用应变硅。

  2003年3月12日:针对笔记本的英特尔®迅驰®移动技术平台诞生,包括了英特尔最新的移动处理器“英特尔奔腾M处理器”。该处理器基于全新的移动优化微体系架构,采用英特尔0.13微米制程技术生产,包含7700万个晶体管。

  2005年5月26日:英特尔第一个主流双核处理器“英特尔奔腾D处理器”诞生,含有2.3亿个晶体管,采用英特尔领先的90纳米制程技术生产。

  2006年7月18日:英特尔®安腾®2双核处理器发布,采用世界最复杂的产品设计,含有17.2亿个晶体管。该处理器采用英特尔90纳米制程技术生产。

  2006年7月27日:英特尔®酷睿™2双核处理器诞生。该处理器含有2.9亿多个晶体管,采用英特尔65纳米制程技术在世界最先进的几个实验室生产。

  2006年9月26日:英特尔宣布,超过15种45纳米制程产品正在开发,面向台式机、笔记本和企业级计算市场,研发代码Penryn,是从英特尔®酷睿™微体系架构派生而出。

  2007年1月8日:为扩大四核PC向主流买家的销售,英特尔发布了针对桌面电脑的65纳米制程英特尔®酷睿™2四核处理器和另外两款四核服务器处理器。英特尔®酷睿™2四核处理器含有5.8亿多个晶体管。

  2007年1月29日:英特尔公布采用突破性的晶体管材料即高-k栅介质和金属栅极。英特尔将采用这些材料在公司下一代处理器——英特尔®酷睿™2双核、英特尔®酷睿™2四核处理器以及英特尔®至强®系列多核处理器的数以亿计的45纳米晶体管或微小开关中用来构建绝缘“墙”和开关“门”,研发代码Penryn。采用了这些先进的晶体管,已经生产出了英特尔45纳米微处理器。

成功试产的Intel下一代45nm制程工艺

  有着High-K铪材料+金属栅极晶体管作为基础,相信Intel的45nm制程处理器可以拥有更低的泄露电流,提高领先的每瓦性能优势(Performance Per Watt)。前提是High-K栅介质确实有如Intel所宣称的性能表现。Intel采用45纳米制程技术开发出首批可工作的处理器——这些处理器是英特尔下一代英特尔®酷睿™2和至强®系列处理器中Penryn系列的一部分。通过这些处理器的开发,英特尔已经成功地解决了阻碍摩尔定律发展的一些重大障碍45纳米技术创新催生了新的半导体技术,并将把摩尔定律带入下一个10年。

  45nm SRAM芯片的试产意味着45nm Penryn处理器的脚步在临近,据Intel相关的负责人赵军表示,在今年下半年Intel Desktop、Mobile、Server平台都会推出使用45nm的处理器产品。

  而截至到2008年上半年,Intel将会有3座工厂投入45nm工艺产品的生产,这些工厂的投入使用不仅可以让Intel率先生产出首批可使用的45nm处理器,还标志着Intel将持续在半导体行业保持至少领先一年的优势。剩下的我们就只有期待,等到实际产品发售之后的体验了,到时候所有的说法都会有实际的答案,我们感谢Intel为这个行业持续注入的创新动力。

趣味介绍:45纳米到底如何小而强大?

  1纳米=10亿分之一米;或者说 1纳米=0.0000000001米

  1947年贝尔实验室制造的第一个晶体管可握在手中,而英特尔制造的全新45纳米晶体管仅在一个红血球细胞表面即可容纳数百个。

  如果一所房子缩小为一个晶体管大小,不借助显微镜你根本无法看到这所房子。要看到45纳米大小的晶体管,你需要借助非常先进的显微镜。

  英特尔即将推出的下一代45纳米处理器(研发代码:Penryn)中,一个晶体管的价格仅相当于1968年时一个晶体管平均价格的百万分之一。如果汽车价格以同样的速度下滑,今天一部新车的价格将仅为1美分。

  你可以在一根人类的头发宽度上摆放2000多个45纳米晶体管。

  你可以在一个针头上摆放3万多个45纳米晶体管,加起来约合150万纳米。

  本文一个小数点(直径约为0.1毫米或10万纳米)可填入2千多个45纳米晶体管。

  一个45纳米晶体管可在1秒钟内切换约3千亿次。一个45纳米晶体管开关一次所需时间,仅相当于以光速(每秒30万公里)穿行0.1英寸所需的时间。

相关推荐

上海华力微电子采用Calibre® RET和OPC计算光刻平台

明导国际  45nm  2011-03-23

IDC:Intel x86服务器市场占有率提升为93.5%

Intel  45nm  x86  2010-08-23

中芯国际的进步

中芯国际  45nm  2010-08-13

Gloabl Foundries 30亿美元的赌局

GloablFoundries  22nm  45nm  28nm  2010-06-04

EDA厂商各自蓄势 备战下一代工艺节点之设计工具

2008-08-12

eASIC 发布 45nm 无掩模费用 ASIC

ASIC  Nextreme-2  45nm   2008-08-05
在线研讨会
焦点