>
首页 » 技术文章 » 超宽带窄脉冲发射芯片及应用系统电路实现

超宽带窄脉冲发射芯片及应用系统电路实现

作者:■ 1清华大学 微电子学研究所  时间:2007-11-23 00:43  来源:电子设计应用

  摘 要:本文基于Kvaser Leaf Professional系列CAN总线分析工具,设计了针对四轮独立驱动电动车高速CAN网络的数据分析系统。文中介绍了四轮独立驱动电动车的控制策略及其CAN网络的设计,并详细阐述了CAN数据分析系统的设计。

  摘 要:本文给出了一个基于自主知识产权芯片实现的超宽带窄脉冲发射电路及测试结果,通过超低功耗单片机MSP430F123控制超宽带脉冲发射机芯片,可实现高速率数据的无线发射,所采用的超宽带发射机芯片基于0.18mm CMOS工艺设计和实现,能够以0~800Mpps的脉冲重复频率产生宽度约为500ps的超宽带窄脉冲信号,经过脉冲整形电路后,信号的频谱在500MHz~1.5GHz之间,发射功率谱密度低于-41.3dBm/MHz。

  关键词:超宽带;窄脉冲;射频标签;无线通信芯片

  前言

  超宽带(Ultra-wideband,UWB)是近年来备受关注的一种全新的无线通信技术,其利用极大带宽、极低功耗的无线信号来传输高速信息。超宽带技术通常利用极窄的脉冲信号(宽度小于1ns)来进行数据传输,脉冲信号的时间分辨率很高,可用于精确的定位应用,精度可达到厘米量级。

  本文利用单片机和自主设计的TH-UWB02超宽带发射芯片实现了一个超宽带窄脉冲发射机电路,能够发送高速率的窄脉冲超宽带脉冲序列,由接收机解调后可以实现高速数据的无线传输,可用于无线数据传输、射频标签等领域。

  电路设计

  本文介绍的超宽带窄脉冲发射机采用TH-UWB02实现窄脉冲信号的产生和信号调制,工作电压为1.8V时,能够在每个输入数据的上升沿产生脉冲宽度小于0.5ns、峰-峰值高于700mV的超宽带脉冲,脉冲重复频率由输入数据的频率决定,最高可达800Mpps。TH-UWB02芯片的数据输入方式为LVDS信号,在低速时也可以直接以CMOS信号输入。

  系统的控制芯片采用MSP430F123,该单片机是 16位RISC处理器,由于采用全静态电路设计,在低至1.8V电压供电时,其工作频率可在DC~4MHz之间随意选择,工作状态下每MIPS消耗的电流小于250mA,休眠状态下电流可以减小到0.7mA,而从休眠模式转入工作模式仅需要6ms。该单片机具备8KB的Flash和256B的RAM空间,内置16位计时器、22个GPIO和一个包络检测ADC,另外还有一个通用同步异步串行接口(USART),可满足复杂的应用设计要求。

  系统中利用了MSP430F123单片机的USART接口(工作在SPI模式),把数据输出端口直接连接到TH-UWB02的数据输入端口,时钟、片选信号不用。在系统时钟为4MHz时,USART接口输出的数据速率最高为4Mbps,调制产生重复速率4Mpps的窄脉冲信号,脉冲发送间隔时间为250ns,能有效抑制多径信道的码间干扰效应。

  TH-UWB02芯片产生的脉冲为高斯脉冲,其信号频带为DC~1.5GHz,为了满足通过超宽带天线发射的要求,通过采用脉冲整形电路,可以把脉冲进行微分整形,信号频带为500MHz~2.0GHz。设计中,脉冲整形电路采用一个简单的高通滤波器实现。

  图1给出了系统的简化原理图,系统主要由电源、MSP430F123单片机、超宽带发射芯片、简单的滤波整形电路组成。系统采用了单个锂锰纽扣电池供电,锂锰纽扣电池输出电压标称为3.0V,但实际上在使用时间长时电压会有所下降,终止电压一般高于2.0V。

图1 窄脉冲超宽带发射电路的简化原理图

  MSP430F123单片机的工作电压为1.8V~3.6V,因此可以直接由电池供电;TH-UWB02的工作电压是1.3V~2.5V,考虑到其工作电流很小(发射瞬间约为20mA,其它时间<100mA),可利用单片机的I/O供电,并用一个简单的二极管降压,把I/O输出电压降低0.7V使用,但需要注意TH-UWB02芯片的电源滤波。

  技术特色

  本文所设计的超宽带窄脉冲发射机具有以下特色:

  超低功耗

  系统中采用的MSP430F123单片机和超宽带发射芯片均为极低功耗的器件。实际测量结果表明,单片机工作状态下(脉冲发射期间,重复频率1Mpps),平均功耗仅约为2mW,而休眠状态下几乎不消耗电流。在合适的信息发射速率下,系统可以采用常见的200mAh锂锰纽扣电池供电工作1年以上。

  高定位精度

  脉冲超宽带利用亚ns的窄脉冲信号传递信息,接收机可利用其极高的时间分辨率来精确定位信号源(发射机)。相关研究表明,通过采用较好的定位算法,定位精度可达厘米量级,比普通的无线定位技术定位精度高出一个数量级以上。

  图2给出了重复频率为500Mpps时超宽带发射芯片TH-UWB02的输出波形,图中显示,发射机产生的窄脉冲信号宽度约为500ps。

图2 超宽带窄脉冲信号测试结果

  低功率谱密度

  本系统发射的脉冲信号功率谱密度与脉冲重复频率有关,在脉冲重复频率高达50Mpps时,实际测量的脉冲信号波形和功率谱密度曲线如图3所示。图中Data为输入信号,Vpulse为产生的窄脉冲信号,PSD为窄脉冲信号的功率谱,由图可见,在重复频率为50Mpps时,脉冲的功率谱密度仍然低于-41.3dBm/MHz。由于功率谱密度是信号功率在时域上的平均,在脉冲重复频率更低时,其功率谱密度也相应地减小。

图3 重复频率50Mpps的超宽带窄脉冲信号测试

  结语

  本文介绍的超宽带窄脉冲发射机实现了窄脉冲超宽带信号的产生和调制,具有极低功耗、低功率谱密度、低成本等特点,以及精确定位能力,可用于无线数据传输、射频标签等众多领域,具有重要的应用价值。同时,自主设计生产的TH-UWB02超宽带发射芯片也具有重要的应用价值。下一步的工作目标包括实现相应的接收机和完整的应用系统。■

  参考文献:

  1 FCC First Report and Order, FCC 02-48, February 14, 2002

  2 Robert J. Fontana, Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology, IEEE Trans. On Microwave Theory and Techniques, Vol. 52, No. 9, pp. 2087-2104, Sep 2004

 关键词:Kvaser Leaf Professional工具;四轮独立驱动电动车;CAN网络;CAN数据分析系统

  伴随着电动汽车的发展,CAN总线通讯技术应用越来越广泛,它可为纯电动汽车上四轮独立驱动控制,以及刹车防抱死系统(ABS)、电子稳定装置(ESP)等主动安全系统的实现提供便利。

  在设计CAN总线通信系统时,总要面临着CAN数据的诊断与分析问题,不能解决该问题,便不能完成设计。本文基于Kvaser Leaf Professional HS这一USB_CAN工具,借助于Visual Basic环境,在PC机上开发出数据分析系统,并在该分析系统与四轮独立驱动电动车电机控制板之间实现了CAN通信。通过对CAN总线数据进行诊断分析,能够更好地完成CAN总线系统的设计。

  四轮独立驱动

  电动车控制策略

  电动车实物模型中使用的分布式四轮电子差速系统由一个中央控制器、四个电动轮控制器及CAN总线网络三个部分组成,其在电动车实物模型上的布局如图1所示。

图1 分布式四轮电子差速系统在车身上的布局

  在该分布式系统中,基于四轮独立控制的电子差速算法被分为整车差速算法与转速控制算法两个部分,其中转速控制算法是针对每个电动轮转速。中央控制器与四个电动轮控制器通过CAN总线连接成一个实时控制网络。

  在该系统控制过程中,中央控制器通过A/D采样获得来自转向传感器的车辆转向角度信号和来自手柄转把中的车速设定信号,经过整车差速算法,分别获得四个车轮当前各自应有的转速,并将这一结果作为当前时刻对应车轮的转速控制设定值,通过CAN总线发送给相应的电动轮控制器。四个车轮控制器以从CAN总线收到的转速设定值作为控制目标,使用电动转速控制算法对各自的电动轮进行控制,使各个电动轮的实际转速实时满足整车差速算法的要求,进而实现电动车辆的平顺转向。

  四轮独立驱动

  电动车CAN控制网络

  通过CAN总线,本四轮驱动电动车中央控制器将车轮的速度等设定值传送给每个车轮的控制器,同时,各电机控制器将实际转速等信息通过CAN总线反馈给中央控制器。CAN网络的拓扑结构如图2所示。

图2 CAN控制网络拓扑结构

  整个网络中共含有五个CAN节点:四个电动轮电机控制器a、b、c、d,以及一个电动车中央控制器e。

  在设计应用层协议时,必须根据实际应用为总线消息编排一个合理的总线仲裁优先顺序,以改善CAN通讯的实时性。在本应用场合中,下行数据即中央控制器发给各电动轮电机控制器的控制命令,比上行数据即各电动轮电机控制器的反馈信息具有更高的优先级。此外,中央控制器发往四个车轮控制器的指令必须同步,才能为后续控制提供可靠的前提。

  综合考虑以上因素,本文设计了如表1所示的CAN数据报文ID体系。

  电机控制器a、b、c、d分别控制电动车左前轮、右前轮、左后轮和右后轮。中央控制器发出的CAN消息数据域结构如图3所示。

图3 中央控制器CAN消息数据域结构

  中央控制器发出的ID为0x010和0x020的CAN数据,表示转速以及转矩的设定值,对应的实际值为模拟量,这里采用了16位长度的有限精度定点数表示。16位数据中高9位表示整数,低7位表示小数,即9Q7格式的定点数。对于中央控制器发出的ID为0x00F的CAN数据,发给每一个电机控制器的命令也是16位的数据,低8位表示刹车命令,高8位表示控制模式选择命令。

  四个电机控制器向中央控制器反馈当前状态信息的CAN消息数据域结构如图4所示。

图4 电机控制反馈状态信息结构

  CAN总线消息的触发方式有两种:事件触发与时间触发。前者适用于发送时间上离散变化的开关状态量,如刹车命令与控制模式选择命令;后者适用于发送时间上连续变化的模拟量,如转速设定值与转矩设定值。由于本控制系统中兼有上述两类总线信息,故采用事件触发与时间触发相结合的方式来进行发送。

  Kvaser Leaf Professional

  HS简介

  Kvaser Leaf Professional是用于CAN和LIN的单通道USB接口,该设备提供了把几个接口简单接入PC的可能性,可以方便地实现同一个USB Hub上连接多个Kvaser Leaf设备,并且无需额外的连接。此外,它还具有很好的EMC(Electro Magnetic Compatibility)性能以及即插即拔的特点。同时,由于一个USB Hub上可以连接多个设备,因此各个设备都可以由该Hub进行供电,具有很低的功耗。

  Kvaser提供的库函数非常丰富,用户可以根据自己的需要调用相应的库函数,灵活地处理CAN总线数据。

  PC机CAN数据分析系统设计

  该数据分析系统根据电轮独立驱动车中央控制器与四个电机控制器之间的CAN通信数据,动态地显示中央控制器发出的命令,以及各个电机的当前运转信息。同时,还可以显示各个电机转速的变化曲线,并具有数据保存功能,便于离线分析。

  该系统基于Visual Basic语言设计开发,应用了Measurement Studio软件中的CWGraph控件来显示转速曲线。通过Kvaser Leaf Professional HS,PC机与控制板之间的CAN通信得以实现。电机运转数据的保存则通过VB编程连接Microsoft Access数据库完成。这样,系统就可以由一个主窗体和五个显示电机转速曲线的子窗体组成,如图5所示。

图5 窗体结构图

  这里,主窗体是启动窗体,子窗体A、B、C、D、E在主窗体启动时并不显示,通过主窗体上的相应按键可以控制子窗体的启动以及关闭,亦即显示和关闭各车轮转速曲线。

  系统运行时,最先启动的是主窗体,通过主窗体上对相应按键的点击等操作,可以方便地与各控制板之间建立CAN通信,接收主控板与电机控制板之间的CAN消息,通过界面内部数据处理函数处理后,在相应显示区域加以显示。

  CAN通信正常后,五个显示区域便会根据CAN总线上的消息动态更新并显示相应信息。

  当需要进行数据保存时,单击Data_Record按键,便会弹出选择数据库的窗口,选择已经建立好的数据库后,电机的状态数据便可以保存在被选择的数据库中,还可以随时中止数据保存。需要注意的是,被保存的电机运转状态数据是在单击Data_Record按键并选择好数据库后界面收到的数据,这之前的数据并没有保存。也就是说,如果想把整个电机运转过程的数据都保存下来的话,在电机开始运转之前就要先单击Data_Record按键,并选择好数据库。

  在退出界面时,首先应该断开CAN总线的连接,单击Disconnect按键断开。然后单击Quit按键便可以正常退出界面。

  本系统的设计采用了在VB中使用ADO(ActiveX Data Object)对象模型的方法,连接Microsoft Access数据库,进行数据保存。只要在一个数据库中建立一系列的表,便可以将数据很方便地保存在相应的表中。比如,本设计中为四个电机分别建立了一个独立的表,用以存储其运转的状态信息,包括转速、转矩、电池电压以及控制模式等信息。利用Access数据库的数据处理功能可以很方便地进行离线的数据分析和处理。

  为了方便不同用户对系统的使用,在数据保存之前,系统提供了一个对话框让用户选择已有的数据库,便于用户自定义数据保存的路径。

  结语

  在本设计的软件方面,在VB环境下,MeasurementStudio提供了功能强大的控件;硬件方面,具有Kvaser Leaf Professional HS以及Peak_CAN等工具,使得本系统的实现变得容易,且效果也比常规的设计方法更好。经过联机调试证明,本系统能有效地对CAN总线的数据进行分析处理。■

  参考文献:

  1.谭浩强. Visual BASIC程序设计[M]. 清华大学出版社,2004

  2.宋广群. VB程序设计[M]. 科技大学出版社,2006

  3.Kvaser AB. Kvaser Leaf User Guide [M] 2006

  4.史久根, 张培仁等. CAN现场总线系统设计技术[M]. 北京:国防工业出版社, 2004

相关推荐

从TI“蝗虫战略”到雷军“芯片免费”

芯片  嵌入式系统  2013-11-07

嵌入式系统领域迎来创新与转型时代

嵌入式系统  通信  2013-05-30

VDC:物联网将改写嵌入式系统开发趋势

物联网  嵌入式系统  2013-05-14

飞思卡尔CEO:新战略初现成效 未来更关注中国市场

飞思卡尔  单片机  2013-04-28

飞思卡尔携手周立功单片机 共同拓展中国MCU市场

飞思卡尔  MCU  单片机  2012-12-19

英飞凌为提高XMC4000单片机生产率免费提供DAVE 3

英飞凌  单片机  2012-04-20
在线研讨会
焦点