首页 » 技术文章 » 基于EDA技术的数字频率计的设计

基于EDA技术的数字频率计的设计

作者:  时间:2009-07-24 14:43  来源:

  0 引 言

  EDA技术是以大规模可编程逻辑器件为设计载体,以硬件语言为系统逻辑描述的主要方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件设计的电子系统到硬件系统的设计,最终形成集成电子系统或专用集成芯片的一门新技术。其设计的灵活性使得EDA技术得以快速发展和广泛应用。

  本文以Max+PlusⅡ软件为设计平台,采用VHDL语言实现数字频率计的整体设计。

  1 工作原理

  众所周知,频率信号易于传输,抗干扰性强,可以获得较好的测量精度。因此,频率检测是电子测量领域最基本的测量之一。频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,即闸门时间为1 s。闸门时间可以根据需要取值,大于或小于1 s都可以。闸门时间越长,得到的频率值就越准确,但闸门时间越长,则每测一次频率的间隔就越长。闸门时间越短,测得的频率值刷新就越快,但测得的频率精度就受影响。一般取1 s作为闸门时间。

  数字频率计的关键组成部分包括测频控制信号发生器、计数器、锁存器、译码驱动电路和显示电路,其原理框图如图1所示。

  2 设计分析

  2.1 测频控制信号发生器

  测频控制信号发生器产生测量频率的控制时序,是设计频率计的关键。这里控制信号CLK取为1 Hz,2分频后就是一个脉宽为1 s的时钟信号FZXH,用来作为计数闸门信号。当FZXH为高电平时开始计数;在FZXH的下降沿,产生一个锁存信号SCXH,锁存数据后,还要在下次 FZXH上升沿到来之前产生清零信号CLEAR,为下次计数做准备,CLEAR信号是上升沿有效。

  2.2 计数器

  计数器以待测信号FZXH作为时钟,在清零信号CLEAR到来时,异步清零;FZXH为高电平时开始计数。本文设计的计数器计数最大值是99 999 999。

  2.3 锁存器

  当锁存信号SCXH上升沿到来时,将计数器的计数值锁存,这样可由外部的七段译码器译码并在数码管上显示。设置锁存器的好处是显示的数据稳定,不会由于周期性的清零信号而不断闪烁。锁存器的位数应跟计数器完全一样,均是32位。

  2.4 译码驱动电路

  本文数码管采用动态显示方式,每一个时刻只能有一个数码管点亮。数码管的位选信号电路是74LS138芯片,其8个输出分别接到8个数码管的位选;3个输入分别接到EPF10K10LC84-4的I/O引脚。

  2.5 数码管显示

  本文采用8个共阴极数码管来显示待测频率的数值,其显示范围从O~99 999 999。

  以下是数码管段选的程序:

  2.6 程序

  综合以上模块分析,可以得到如下程序:


  
3 结 语

  本文采用EDA设计方法,把数字频率计系统组建分解成若干个功能模块进行设计描述,选用Altera公司生产的FPGA产品FLEX10K系列的 EPF10K10LC84-4芯片,下载适配后,便可以在数码管上显示出待测频率的数值。实验证明,其软件设计思想清晰,硬件电路简单,具有一定的实用性。

 

相关推荐

武汉争夺半导体产业第三极 引发蝴蝶效应

半导体  EDA  2013-05-28

武汉争夺半导体产业第三极

新思科技  EDA  2013-05-24

新思科技收购微捷码一事达成最终协议

新思科技  芯片设计  EDA  2011-12-02

ARM与Cadence签署了新的EDA技术应用长期协议

Cadence  EDA  2011-10-27

SpringSoft发表Verdi VIA交流平台

SpringSoft  EDA  Verdi  VIA   2011-10-25

MathWorks HDL工具新添Xilinx FPGA硬件验证功能

MathWorks  EDA  Simulator  Link 3.3  2011-06-10
在线研讨会
焦点